Constrained-degree percolation in random environment
نویسندگان
چکیده
Nous considérons le modèle de percolation à degré contraint dans un environnement aléatoire sur réseau carré. Dans ce modèle, chaque sommet v a une contrainte indépendante κv qui prend la valeur j∈{0,1,2,3} avec probabilité ρj. Chaque arête e tente s’ouvrir temps uniforme Ue [0,1], indépendamment toutes les autres arêtes. Il réussit si l’instant ses deux sommets d’extrémité ont des degrés strictement inférieurs leurs contraintes respectives attachées. montrons que subit transition phase non triviale lorsque ρ3 est suffisamment grand. La preuve consiste en inégalité découplage, continuité événements locaux et argument renormalisation.
منابع مشابه
Percolation in a dependent random environment
Draw planes in IR 3 that are orthogonal to the x axis, and intersect the x axis at the points of a Poisson process with intensity ; similarly, draw planes orthogonal to the y and z axes using independent Poisson processes (with the same intensity). Taken together, these planes naturally deene a randomly stretched rectangular lattice. Consider bond percolation on this lattice where each edge of ...
متن کاملPercolation of spatially constrained Erdős-Rényi networks with degree correlations.
Motivated by experiments on activity in neuronal cultures [ J. Soriano, M. Rodríguez Martínez, T. Tlusty and E. Moses Proc. Natl. Acad. Sci. 105 13758 (2008)], we investigate the percolation transition and critical exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes are randomly distributed in a two-dimensional spatial domain, and the conn...
متن کاملPercolation on sparse random graphs with given degree sequence
We study the two most common types of percolation process on a sparse random graph with a given degree sequence. Namely, we examine first a bond percolation process where the edges of the graph are retained with probability p and afterwards we focus on site percolation where the vertices are retained with probability p. We establish critical values for p above which a giant component emerges in...
متن کاملEdge Percolation on a Random Regular Graph of Low Degree
Consider a uniformly random regular graph of a fixed degree d≥ 3, with n vertices. Suppose that each edge is open (closed), with probability p(q = 1− p), respectively. In 2004 Alon, Benjamini and Stacey proved that p = (d − 1) is the threshold probability for emergence of a giant component in the subgraph formed by the open edges. In this paper we show that the transition window around p has wi...
متن کاملPercolation on random graphs with a fixed degree sequence
We consider bond percolation on random graphs with given degrees and bounded average degree. In particular, we consider the order of the largest component after the random deletion of the edges of such a random graph. We give a rough characterisation of those degree distributions for which bond percolation with high probability leaves a component of linear order, known usually as a giant compon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'I.H.P
سال: 2022
ISSN: ['0246-0203', '1778-7017']
DOI: https://doi.org/10.1214/21-aihp1231